Sains Malaysiana 52(11)(2023): 3163-3176
http://doi.org/10.17576/jsm-2023-5211-11
Penghasilan
Karbon Aktif melalui Pengaktifan Wap Biojisim Serat Panjang Tandan Sawit
Kosong
(Production
of Activated Carbon via Steam Activation of Empty Fruit Bunch Long Fibre
Biomass)
MUHAMMAD
NUR HAKIMI ZABIDI & DARFIZZI DERAWI*
Kluster Teknologi Oleokimia,
Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan:
15 Julai 2023/Diterima: 25 Oktober 2023
Abstrak
Longgokan tandan sawit kosong (EFB) di
Malaysia memerlukan perancangan yang lebih teliti dalam menukarkan sisa
biojisim kepada produk bernilai tinggi. Penghasilan karbon aktif daripada
biojisim EFB merupakan salah satu inisiatif yang sangat signifikan dalam
menghasilkan produk bahan termaju ini. Serat panjang EFB ditukarkan kepada
karbon aktif melalui kaedah pengaktifan stim. Pengaktifan stim secara suntikan
wap air ini telah dijalankan pada suhu 700, 750, 800, 900 dan 1000 °C selama 60
minit. Serbuk EFB, bio-arang dan karbon aktif yang dihasilkan dalam kajian ini
telah menjalani analisis pencirian menggunakan kaedah penjerapan fizikal. Karbon aktif terhasil
pada suhu 800 °C memberikan luas permukaan (561.0 m2/g) dan isi padu
liang (0.2800 cm3/g) tertinggi dan bersifat mesoliang (2.9 nm)
berbanding karbon aktif yang terhasil pada suhu lain. Oleh itu, suhu 800 °C
merupakan suhu optimum bagi penghasilan karbon aktif dalam kajian ini.
Sehubungan itu, karbon aktif 800 °C
dilakukan pencirian selanjutnya menggunakan XRD, FTIR dan FESEM. Struktur
amorfus dapat dilihat berdasarkan pencirian XRD. Melalui analisis FTIR, karbon
aktif ini mengandungi beberapa kumpulan berfungsi seperti alifatik-CH, C-O dan
C=O. Kemunculan puncak penyerapan getaran kumpulan C=O pada karbon aktif ini
selepas pengaktifan wap dapat dikaitkan dengan tindak balas pengoksidaan
bio-arang yang mana wap air bertindak sebagai agen pengoksidaan. Tambahan pula,
morfologi permukaannya oleh FESEM menunjukkan permukaan berliang berbentuk
bulat dan susunannya kurang teratur. Justeru, kajian berkaitan penghasilan
karbon aktif daripada biojisim tandan sawit kosong melalui pengaktifan stim
telah dijalankan. Penukaran biojisim EFB kepada karbon aktif menyokong kepada
usaha membangunkan teknologi hijau dan kitaran ekonomi mampan.
Kata kunci: Biojisim tandan sawit kosong;
karbon aktif; pengaktifan wap
Abstract
The abundance of empty oil palm bunches (EFB) in Malaysia
requires more careful planning in converting biomass waste into high-value products.
The production of activated carbon from EFB biomass is one of the most
significant initiatives in producing this advanced material product. EFB fibers
are converted to activated carbon through a steam activation method. Steam
activation by water vapor injection was carried out at temperatures of 700,
750, 800, 900 and 1000 °C for 60 min. Empty palm bunch powder, bio-charcoal and all
the activated carbon produced in this study have undergone characterization
analysis using the physical adsorption method. Activated carbon produced at a
temperature of 800 °C exhibits the highest surface area (561.0 m2/g)
and pore volume (0.2800 cm3/g) and is mesoporous (2.9 nm) compared
to activated carbon produced at other temperatures. Therefore, 800 °C is the
optimum temperature for producing activated carbon in this study. As such,
activated carbon at 800 °C was further characterized using XRD, FTIR and FESEM. Amorphous structure
can be seen based on XRD characterization. Through FTIR analysis, this
activated carbon contains several functional groups such as aliphatic-CH, C-O,
and C=O. The appearance of the peak of C=O group vibration absorption in this
activated carbon after steam activation can be attributed to the oxidation
reaction of bio-charcoal where steam acts as the oxidizing agent. Furthermore,
its surface morphology by FESEM shows a porous surface that is round and less
regular in arrangement.Therefore, a study related to the production of
activated carbon from the biomass of empty palm bunches through steam
activation was carried out. Conversion of EFB biomass to activated carbon
supports efforts to develop green technologies and sustainable circular
economic.
Keywords:
Activated carbon; biomass empty fruit bunches; steam activation
RUJUKAN
Acosta, R., Fierro, V., de Yuso, A.M., Nabarlatz, D.
& Celzard, A. 2016. Tetracycline adsorption onto activated carbons produced
by KOH activation of tyre pyrolysis char. Chemosphere 149: 168-176.
Alam, M.Z., Muyibi, S.A. & Kamaldin, N. 2008.
Production of activated carbon from oil palm empty fruit bunches for removal of
zinc. Twelfth International Water Technology Conference. hlm. 374-383.
Alhinai, M., Azad, A.K., Bakar, M.S.A. & Phusunti,
N. 2018. Characterisation and thermochemical conversion of rice husk for
biochar production. International Journal of Renewable Energy Sources 8:
1648-1656.
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J. &
Olazar, M. 2015. Physical activation of rice husk pyrolysis char for the
production of high surface area activated carbons. Industrial &
Engineering Chemistry Research 54(29): 7241-7250.
Ayinla, R.T., Dennis, J.O., Zaid, H.M., Sanusi, Y.K.,
Usman, F. & Adebayo, L.L. 2019. A review of technical advances of recent
palm bio-waste conversion to activated carbon for energy storage. Journal of
Cleaner Production 229: 1427-1442.
Elias, M.A., Hadibarata, T. & Sathishkumar, P.
2021. Modified oil palm industry solid waste as a potential adsorbent for lead
removal. Environmental Chemistry and Ecotoxicology 3: 1-7.
Fu, J., Zhang, J., Jin, C., Wang, Z., Wang, T., Cheng,
X. & Ma, C. 2020. Effects of temperature, oxygen and steam on pore
structure characteristics of coconut husk activated carbon powders prepared by
one-step rapid pyrolysis activation process. Bioresource Technology 310:
123413-123421.
Gao, L., Dong, F.Q., Dai, Q.W., Zhong, G.Q., Halik, U.
& Lee, D.J. 2016. Coal tar residues based activated carbon: Preparation and
characterization. Journal of the Taiwan Institute of Chemical Engineering 63: 166-169.
González-García, P. 2018. Activated carbon from
lignocellulosics precursors: A review of the synthesis methods,
characterization techniques and applications. Renewable and Sustainable
Energy Reviews 82: 1393-1414.
Hamzah, N., Tokimatsu, K. & Yoshikawa, K. 2019.
Solid fuel from oil palm biomass residues and municipal solid waste by
hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 11(4): 1060.
Ibrahim, I., Hassan, M.A., Abd-Aziz, S., Shirai, Y.,
Andou, Y., Othman, M.R., Ali, A.A.M. & Zakaria, M.R. 2017. Reduction of
residual pollutants from biologically treated palm oil mill effluent final
discharge by steam activated bioadsorbent from oil palm biomass. Journal of
Cleaner Production 141: 122-127.
Intarachandra, N., Siriworakon, S. & Sangmanee, T.
2019. Preparation of oil palm empty fruit bunch based activated carbon for
adsorption of dye from aqueous solution. MATEC Web of Conferences 268:
06008-06013.
Jawad, A.H., Mamat, N.F.H., Abdullah, M.F. &
Ismail, K. 2017. Adsorption of methylene blue onto acid-treated mango peels:
Kinetic, equilibrium and thermodynamic. Desalination and Water Treatment 59: 210-219.
Jawad, A.H., Rashid, R.A., Ishak, M.A.M. & Wilson,
L.D. 2016. Adsorption of methylene blue onto activated carbon developed from
biomass waste by H2SO4 activation: Kinetic, equilibrium
and thermodynamic studies. Desalination and Water Treatment 57(52):
25194-25206.
Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W.,
Sabolsky, E.M. & Wang, J. 2020. Activated carbons prepared by indirect and
direct CO2 activation of lignocellulosic biomass for supercapacitor
electrodes. Renewable Energy 155: 38-52.
Kannan, P., Nur Hanani Mansor, Mohd Haizal Zainal
Abidin, Rusnani Md. Rus, Khairuman Hashim, Zaki Aman & Tan Say Peng. 2022.
Operating model for partnership between smallholders and mills: A study in
Perak and Johor, Malaysia. Oil Palm Industry Economic Journal 22(2):
27-41.
Keppetipola, N.M., Dissanayake, M., Dissanayake, P.,
Karunarathne, B., Dourges, M.A., Talaga, D., Servant, L., Olivier, C., Toupance,
T., Uchida, S., Tennakone, K., Kumara, G.R.A. & Cojocaru, L. 2021.
Graphite-type activated carbon from coconut shell: A natural source for
eco-friendly non-volatile storage devices. RSC Advances 11(5):
2854-2865.
Khor, K.H., Lim, K.O. & Zainal, Z.A.
2009. Characterization of bio-oil: A by-product from slow pyrolysis of oil palm
empty fruit bunches. American Journal of Applied Sciences 6(9):
1647-1652.
Kumar, K.V., Gadipelli, S., Wood, B., Ramisetty, K.A.,
Stewart, A.A., Howard, C.A., Brett, D.J.L. & Rodriguez-Reinoso, F. 2019.
Characterization of the adsorption site energies and heterogeneous surfaces of
porous materials. Journal of Materials Chemistry A 7: 10104-10137.
Lopes, G.K.P., Zanella, H.G., Spessato, L., Ronix, A.,
Viero, P., Fonseca, J.M., Yokoyama, J.T.C., Cazetta, A.L. & Almeida, V.C.
2021. Steam-activated carbon from malt bagasse: Optimization of preparation
conditions and adsorption studies of sunset yellow food dye. Arabian Journal
of Chemistry 14(3): 103001-103016.
Marrakchi, F., Ahmed, M.J., Khanday, W.A., Asif, M.
& Hameed, B.H. 2017. Mesoporous activated carbon prepared from chitosan
flakes via single-step sodium hydroxide activation for the adsorption of
methylene blue. International
Journal of Biological Macromolecules 98: 233-239.
May, J., Thoe, L., Surugau, N., Lye, H. & Chong,
H. 2019. Application of oil palm empty fruit bunch as adsorbent: A review. Transactions
on Science and Technology 6(1): 9-26.
Mopoung, S. & Dejang, N. 2021. Activated carbon
preparation from eucalyptus wood chips using continuous carbonization–steam
activation process in a batch intermittent rotary kiln. Scientific Reports 11(1): 13948-13957.
Mostapha, M., Azamkamal, F., Salleh, K.M., Amran,
U.A., Gan, S. & Zakaria, S. 2021. Parameter optimization on esterified oil
palm empty fruit bunch cellulose (OPEFB). Sains Malaysiana 50(12):
3719-3732.
Naher, L., Mazlan, N.A., Hamzah, N.A.B.,
Islam, S. & Ab Rhaman, S.M.S. 2022. Palm press fibre and rice straw for
cultivation grey oyster mushroom (Pleurotus sajor-caju). Sains
Malaysiana 51(5): 1305-1315.
Noor, H.A.R., Nor, F.M., Sharmeela, M.
& Sharifah, A.S.A.K. 2014. Preparation and characterization of activated
carbon from oil palm empty fruit bunch (EFB). Key Engineering Materials 594-595: 44-48.
Nur Sulihatimarsyila, A.W., Lau, H.L.N., Loh, S.K.,
Astimar, A.A., Zulkifli, A.R. & Choo, Y.M. 2017. Activated carbon from oil
palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal
of Oil Palm Research 29(2): 278-290.
Odetoye, T.E., Afolabi, T.J., Abu Bakar, M.S. &
Titiloye, J.O. 2018. Thermochemical characterization of Nigerian Jatropha
curcas fruit and seed residues for biofuel production. Energy, Ecology
and Environment 3(6): 330-337.
Radenahmad, N., Tasfiah, A., Saghir, M., Taweekun, J.,
Saifullah, M., Bakar, A., Reza, M.S & Kalam, A. 2020. A review on biomass
derived syngas for SOFC based combined heat and power application. Renewable
and Sustainable Energy Reviews 119: 109560.
Rafsanjani, H.H., Kamandari, H. & Najjarzadeh, H.
2013. Study on pore and surface development of activated carbon produced from
Iranian coal in a rotary Kiln reactor. Iranian Journal of Chemical
Engineering 10: 27-38.
Rahayu, D.E., Wirjodirdjo, B. & Hadi, W. 2019. Availability
of empty fruit bunch as biomass feedstock for sustainability of bioenergy
product (system dynamic approach). AIP Conference Proceedings 2194(1):
020095.
Rashid, R.A., Jawad, A.H., Ishak, M.A.B.M. &
Kasim, N.N. 2018. FeCl3-activated carbon developed from coconut
leaves: Characterization and application for methylene blue removal. Sains
Malaysiana 47(3): 603-610.
Rashidi, N.A. & Yusup, S. 2017. A review on recent
technological advancement in the activated carbon production from oil palm
wastes. Chemical Engineering Journal 314: 277-290.
Reza, M.S., Yun, C.S., Afroze, S., Radenahmad, N.,
Bakar, M.S.A., Saidur, R., Taweekun, J. & Azad, A.K. 2020. Preparation of
activated carbon from biomass and its’ applications in water and gas
purification, a review. Arab Journal of Basic and Applied Sciences 27(1): 208-238.
Saad, M.J.,
Hua, C.C., Misran, S., Zakaria, S., Sajab, M.S. & Abdul Rahman, M.H. 2020a.
Rice husk activated carbon with NaOH activation: Physical and chemical
properties. Sains Malaysiana 49(9): 2261-2267.
Saad, M.J., Chin Hua, C., Zakaria, S., Sajab, M.S.
& Misran, S. 2020b. Malaysia rice wastes for activated carbon production. Proceeding
- 9th Kuala Lumpur International Agriculture, Forestry and Plantation
Conference (KLIAFP9). hlm. 20-26.
Samiran, N.A., Jaafar, M.N.M., Chong, C.T. &
Jo-Han, N. 2015. A review of palm oil biomass as a feedstock for syngas fuel
technology. Jurnal Teknologi (Sciences & Engineering) 72: 13-18.
United Nations Development Programme. 2017. Goal 13: Climate
Action. UNDP. https://www.my.undp.org/content/malaysia/en/home/sustainable-development-goals/goal-13-climate-action.html.
Diakses 22 Jun 2023.
Wang, Y., Wang, L., Deng, X. & Gao, H. 2020. A
facile pyrolysis synthesis of biochar/ZnO passivator: Immobilization behavior
and mechanisms for Cu (II) in soil. Environmental Science and Pollution
Research 27(2): 1888-1897.
Wei, X. & Li, T. 2021. Wooden activated carbon
production for dioxin removal via a two-step process of carbonization coupled
with steam activation from biomass wastes. ACS Omega 6(8): 5607-5618.
Wong, S., Ngadi, N., Inuwa, I.M. & Hassan, O.
2018. Recent advances in applications of activated carbon from biowaste for
wastewater treatment: A short review. Journal of Cleaner Production 175:
361-375.
Yin, Y., Liang, D., Liu, D. & Liu, Q. 2022.
Preparation and characterization of three-dimensional hierarchical porous
carbon from low-rank coal by hydrothermal carbonization for efficient iodine
removal. RSC Advances 12(5): 3062-3072.
Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J. &
Xing, G. 2014. Preparation and characterization of activated carbon from reedy
grass leaves by chemical activation with H3PO4. Applied Surface Science 320: 674-680.
Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017.
Preparation and characterization of impregnated magnetic particles on oil palm
frond activated carbon for metal ions removal. Sains Malaysiana 46(5):
773-782.
*Pengarang untuk surat-menyurat; email:
darfizzi@ukm.edu.my
|